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GFD I, 2/6/2012 

Problem Set #3 Solutions 
 

1) [10+10 points]  For the ocean case the governing equation is 

 ut ! fv = !g"x   (*) 

In geostrophic balance this gives: 

  
vg =

g!x

f
=

9.8 m s-2( ) 10"5( )
10"4  s-1 # 1.0 m s-1  

And note that this is a flow to the North for a pressure gradient that pushes to the West.  

Ignoring the Coriolis term, the time it would take to accelerate to this speed (I am not 

being picky about the direction here) is found from a time integral of (*) with f = 0 .  

Thus: 

  

!t = change in speed
g"x

= 1.0 m s-1

9.8 m s-2( ) 10#5( ) $ 104  s % 3 hours  

In this time the parcel would have traveled a distance given by the standard physics 

formula: 

      
  
distance traveled = 1

2
!  acceleration ! "t2 = 0.5! 10#4  m s-2( )! 104  s( )2

= 5 km  

This is not very far!  The point of this exercise is to make it clear that the Coriolis force 

becomes important rather quickly compared with a day, and can substantially limit the 

speed attained by fluid motion. 

 In the atmospheric case the governing equation is 

  
vt + fu = ! 1

"0

#p
#y

= !g #z
#y p

= 3.2$10!3  m s-2  

Assuming f =10!4  s!1  the eventual geostrophic velocity is 

   
  
ug =

1
f

!g "z
"y p

#

$
%

&

'
( = 32 m s-1  

Note that this is a velocity to the East (which would be called a “Westerly” by 

atmospheric scientists).  This direction of zonal flow is typical of mid-latitude winds at 
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altitude in both hemispheres.  Proceeding in the same way as for the ocean case, it would 

take about 

  
!t = change in speed

pressure force per unit mass
= 1

f
" 3 hours  

For a non-rotating flow to accelerate to this speed, and during this time a fluid parcel 

would have moved about 

  
distance traveled = 1

2
!  acceleration ! "t2 = 0.5! 3.2!10#3  m s-2( )! 104  s( )2

= 180 km  

So, comparing the two cases (an assuming the sizes of the pressure gradients we used to 

be typical of the two fluids), they both accelerate to a speed equal to the eventual 

geostrophic speed in just a few hours, but the atmospheric flow goes over 30 times farther 

in this time, and attains a speed which is over 30 times faster. 

 

2) [20 points]  Including the effects of planetary rotation, the first part of derivation of the 

Hydrostatic Approximation is identical to that done in class lecture 2.4.  That is, from 

scaling of the MASS equation with small density perturbations, we still find 

 
W =U H

L
, and therefore 

 

D
Dt

!

"
#

$

%
& =

U
L

. 

Next we want to scale the X,Y-MOM equations, in order to find a dynamically consistent 

scale for the pressure perturbations.  Doing this with rotation we find: 

    

!
DuH

Dt
+ ! f k̂ " uH = #$H p

%

&
'
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!00

U 2
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!"#

+ !00 fU
(2)
!"#

=
p '%& ()
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(3)
$

 

And so the ratio of the first two terms is 

  

(1)
(2)

= U
fL

! Ro ,   the "Rossby Number"  

We have already done the rest of the scaling in the limit of high  Ro  (where we would 

neglect rotation.  So here let us assume that   Ro <<1 , in which case the scaling for the 

pressure perturbation is 
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  p '!" #$ = %00 fUL   (+) 

The final step in the derivation of the Hydrostatic Approximation was to scale the Z-

MOM equation.  Doing this with our new scale (+) for the perturbation pressure, we find 

   

! Dw
Dt

= " pz " p 'z "!g " ! 'g
#

$
%

&

'
(  gives

!00

WU
L

=
p '#$ &'
H

" ! '#$ &'g  ,  which may be written as:

!00U
H
L

U
L

(1)
! "# $#

=
!00 fUL

H
(2)

!"# $#
" ! '#$ &'g

(3)
!"$

 

The ratio of the first two terms is now given by 

  

(1)
(2)

= vertical acceleration
force per unit mass due to perturbation pressure gradient

= H
L

!
"#

$
%&

2

Ro  

which is identical to the result we obtained for the non-rotating case, except that now the 

term which must be small in order for the Hydrostatic Approximation to be valid has the 

Rossby Number in it.  In the lab we saw one consequence of this: even for flows with 

order-one aspect ratio,   H L = 1 , as long as   Ro <<1  there was negligible vertical shear of 

the horizontal flow.  Recall that the requirement for the vertical shear to be small in the 

shallow water equations was that the pressure be hydrostatic.  This result is specific to 

constant density fluid flows.  If the density field has lateral variation then you can create 

vertical shear (like in the thermal wind equations), even though the flow is hydrostatic. 


